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ABSTRACT

We performed relativistic magnetohydrodynamic simulations of the hydro-

dynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla

(2006) using the RAISHIN code. Simulation results show that the presence of

a magnetic field may change the properties of the shock interface between the

tenuous, overpressured jet (V z
j ) flowing tangentially to a dense external medium.

Magnetic fields can lead to more efficient acceleration of the jet, in comparison

to the pure-hydrodynamic case. A “poloidal” magnetic field (Bz), tangent to

the interface and parallel to the jet flow, produces both a stronger outward mov-

ing shock and a stronger inward moving rarefaction wave. This leads to a large

velocity component normal to the interface in addition to acceleration tangent

to the interface, and the jet is thus accelerated to larger Lorentz factors than

those obtained in the pure-hydrodynamic case. In contrast, a strong “toroidal”

magnetic field (By), tangent to the interface but perpendicular to the jet flow,

also leads to stronger acceleration tangent to the shock interface relative to the

pure-hydrodynamic case, but to a lesser extent than found for the “poloidal”

case due to the fact that the velocity component normal to the shock interface

is now much smaller. Overall, the acceleration efficiency in the “toroidal” case

is less than that of the “poloidal” case but both geometries still result in higher

Lorentz factors than the pure-hydrodynamic case. Thus, the presence and rela-

tive orientation of a magnetic field in relativistic jets can significant modify the

hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).
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1. Introduction

Relativistic jets have been observed in active galactic nuclei (AGN) and quasars (e.g.,

Urry & Pavovani 1995; Ferrari 1998), in black hole binaries (microquasars) (e.g., Mirabel

& Rodiriguez 1999), and are also thought to be responsible for the jetted emission from

gamma-ray bursts (GRBs)(e.g., Zhang & Mészáros 2004; Piran 2005; Mészáros 2006). Proper

motions observed in jets from microquasars and AGNs imply jet speeds from ∼ 0.9c up to

∼ 0.999c, and Lorentz factors in excess of Γ ∼ 100 have been inferred for GRBs. The

acceleration mechanism(s) capable to boost jets to such highly-relativistic speeds have not

yet been fully established.

Recently, Aloy & Rezzolla (2006) investigated a potentially very powerful acceleration

mechanism in the context of purely hydrodynamical flows, posing a simple Riemann problem.

If the jet is hotter and thus at higher pressure than the external medium, and moves with

a large velocity tangent to the interface with a cold, slowly moving (or stationary) external

medium, the relative motion of the two fluids produces a hydrodynamical structure in the

direction perpendicular to the flow (normal to the interface), composed of a “forward shock”

moving away from the jet axis, and a “reverse shock” (or a rarefaction wave) moving toward

the jet axis. Following Aloy & Rezzolla (2006) we label this pattern either
←

SCS
→

, or

←
RCS

→
), where

←
S refers to the reverse shock, (

←
R to the reverse rarefaction wave), S

→

to the forward shock, and C to the contact discontinuity between the two fluids. In the case

←
RCS

→
, the rarefaction wave propagates into the jet and the low pressure wave leads to

strong acceleration of the jet fluid into the ultrarelativistic regime. This hydrodynamical

boosting mechanism is very simple and powerful, but in addition to thermodynamic and

kinematic effects one must also consider the effects of magnetic fields that may be present

in the initial flow, or are generated within the shocked outflow.

The most promising mechanisms for producing relativistic jets involve magnetohydro-

dynamic centrifugal acceleration and/or magnetic pressure driven acceleration from the ac-

cretion disk around compact objects (e.g., Blandford & Payne 1982; Fukue 1990), or direct

extraction of rotating energy from a rotating black hole (e.g., Penrose 1969; Blandford &

Znajek 1977). Recent General Relativistic Magneto-Hydrodynamic (GRMHD) simulations

of jet formation in the vicinity of strong gravitational field sources, such as black holes or

neutron stars, show that jets can be produced and accelerated by the presence of mag-

netic fields which are significantly amplified by the rotation of the accretion disk and/or the
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frame-dragging of a rotating black hole (e.g., Koide et al. 1999, 2000; Nishikawa et al. 2005;

Mizuno et al. 2006b; De Villiers et al. 2005; Hawley & Krolik 2006; McKinney & Gammie

2004; McKinney 2006). The presence of strong magnetic fields is likely in areas close to

the formation and acceleration region of relativistic jets. In the context of GRBs, standard

scenarios invoke a fireball that is accelerated by thermal pressure during the initial free ex-

pansion phase (e.g., Mészáros et al. 1993; Piran et al. 1993). Magnetic dissipation may

occur during the expansion, and a fraction of the dissipated energy may be used to further

accelerate the fireball (e.g., Drenkhahn & Spruit 2002). Whether one considers the fate of

the collapsing core of a very massive star (Woosley 1993), or the merger of a neutron star

binary system (Paczynski 1986), the differentially rotating disks that feed the newly born

black hole are likely to amplify any present seed field through magnetic breaking and the

magnetorotational instability (MRI) proposed by Balbus & Hawley (1991, 1998). Numerical

solutions of the coupled Einstein-Maxwell-MHD equations (e.g., Stephens et al. 2006, and

references therein) confirm the expected growth of seed fields, even to the point at which the

fields become strong enough to be dynamically important.

Here, we investigate the effect of magnetic fields on the boost mechanism proposed by

Aloy & Rezzolla (2006). We show that the presence of magnetic fields in the jet can provide

even more efficient acceleration of the jet than possible in the pure-hydrodynamic case. The

highly significant role magnetic fields may play in accretion flows (e.g., Miller et al. 2006) and

in core-collapse supernovae (e.g., Woosley & Janka 2005) is perhaps echoed in the collimated

relativistic outflows from some compact stellar remnants.

2. Numerical Method

In order to study the magnetohydrodynamic boost mechanism for relativistic jets, we

use a 1-dimensional special relativistic MHD (RMHD) version of the 3-dimensional GRMHD

code “RAISHIN” in Cartesian coordinates (Mizuno et al. 2006a). A detailed description of

the code and its verification can be found in Mizuno et al. (2006a). In the simulations pre-

sented here we use the piecewise parabolic method for reconstruction, the HLL approximate

Riemann solver, a flux-CT scheme, and Noble’s 2D method.

We consider the Riemann problem consisting of two uniform initial states (a left- and

a right state) with different and discontinuous hydrodynamic properties specified by the

rest-mass density ρ, the gas pressure p, the specific internal energy u, the specific enthalpy

h ≡ 1+u/c2 + p/ρc2, and with velocity component vt = vz (the jet-direction) tangent to the

initial discontinuity. We consider the right state (the medium external to the jet) to be a cold

fluid with a large rest-mass density and essentially at rest. Specifically, we select the following



– 4 –

initial conditions: ρR = 10−2ρ0, pR = 1.0ρ0c
2, vn

R = vx
R = 0.0, and vt

R = vz
R = 0.0, where ρ0 is

an arbitrary normalization constant (our simulations are scale-fee) and c is the speed of light

in vacuum, c = 1. The left state (jet region) is assumed to have larger pressure and lower

density than the right state, and a relativistic velocity tangent to the discontinuity surface.

Specifically, ρL = 10−4ρ0, pL = 10.0ρ0c
2, vn

L = vn
L = 0.0, and vt

L = vz
L = 0.99c (γL ≃ 7) (in

Table 1 these conditions are collectively labeled as case HDA). Figure 1 shows a schematic

depiction of the geometry of our simulations.

To investigate the effect of magnetic fields, we consider the following left state field

geometries: “poloidal”, Bz = 3.0
√

ρ0c2 (B
′

z = 3.0
√

ρ0c2), in the MHDA case, and “toroidal”,

By = 21.0
√

ρ0c2 (B
′

y = 3.0
√

ρ0c2), in the MHDB case (see Table1), where B
′

i is the magnetic

field measured in the jet fluid frame (B
′

y = By/γ, B
′

z = Bz). Although the strength of the

magentic field measured in the laboratory frame (Bi) in the left state is larger in the MHDB

case than the MHDA case, the magnetic pressure (pmag) is the same as that of the MHDA

case (pmag = (B
′

)2/2).

For comparison, the HDB case listed in Table 1 is a high gas pressure pure-hydrodynamic

case (pL = 14.5ρ0c
2). In this case the gas pressure pL in left state is equal to the total pressure

(ptot) in the MHD cases (ptot = pgas + pmag) in the left state. The fluid satisfies a Γ − law

equation of state with Γ = 5/3. We employ free boundary conditions in all-directions.

The simulations are performed in the region −0.2 ≤ x ≤ 0.2 with 1200 computational

zones until simulation time t = 0.1. We emphasize that our simulations are scale-fee. If

we specify a system of size L = 107 cm (∆L ≃ 8 × 103 cm), a simulation time of t =

0.1 corresponds to about 0.03 msec. The units of magnetic field strength and pressure

depend on the normalization of the density. If we take, for example, the density unit to be

ρ0 = 10−20 g cm−3, the magnetic field strength unit is about 3 G and the pressure unit is

P ≃ 10 dyn cm−2.

3. Results

3.1. Effects of the magnetic field in 1-D simulations

Figure 2 shows the radial profiles of density, gas pressure, velocity normal to the interface

(vx) - hereafter normal velocity - and velocity tangent to the interface (vz)- hereafter tan-

gential velocity - for case HDA. The solution displays a right-moving shock, a right-moving

contact discontinuity and a left-moving rarefaction wave (
←

RCS
→

). This hydrodynamical

profile is similar to that found by Rezzolla et al. (2003) and Aloy & Rezzolla (2006). The

simulation results (dashed lines) are in good agreement with the exact solution (solid lines,
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calculated with the code of Giacomazzo & Rezzolla 2006) except for the spike in the normal

velocity vx. Otherwise the normal velocity and propagation of the shock propagating to the

right (the forward shock) is vx ∼ 0.065c. The small spike evident in Fig. 2c is a numerical

artifact and is seen in all simulation results (e.g., in the middle panel of Figs. 3) at the right

moving shock (S
→

). In the left-moving rarefaction (
←

R) region, the tangential velocity in-

creases as a result of the hydrodynamical boosting mechanism described by Aloy & Rezzolla

(2006). In the case shown in Figure 2 the jet is accelerated to γ ∼ 17 from an initial Lorentz

factor of γL ≃ 7.

Figure 3 displays the resulting profiles of gas pressure, normal velocity (vx) and tangen-

tial velocity (vz) of the magnetohydrodynamic cases MHDA (blue), MHDB (red), and the

high pressure, pure-hydrodynamic case HDB (green). In the magnetohydrodynamic cases,

the magnetization parameter σ ≡ b2/ρh and the plasma beta parameter β ≡ pgas/pmag

(on the left side) are 0.351 and 2.278, respectively. The resulting hydrodynamic structure

consists of a right- propagating fast shock, a right-propagating contact discontinuity, and a

left-propagating fast rarefaction wave (
←

RF CSF→).

In the MHDA case (Bz = 3.0 (B
′

z = 3.0)) shown as blue curves, the right-moving fast

shock (SF→) and the left-moving fast rarefaction wave (
←

RF ) are stronger than the related

structures in the HDA case. Consequently, the normal velocity (vx ∼ 0.096c) is larger than

that for the HDA case (vx ∼ 0.059c). The tangential velocity (vz ∼ 0.9960c) is lower than

that of the HDA case (vz ∼ 0.9965c). Although the acceleration in the z-direction is weaker,

the jet experiences a larger total acceleration than in the HDA case due to the larger normal

velocity, and the jet Lorentz factor reaches γ ∼ 31. Thus the “poloidal” magnetic field in

the jet region strongly affects sideways expansion, shock profile and total acceleration.

In the MHDB case (By = 21.0 (B
′

y = 3.0)) shown as red curves, the right-moving fast

shock (SF→) is slightly weaker than in the HDA case, and the resulting normal velocity

(vx ∼ 0.05590c) is slightly less than in the HDA case (vx ∼ 0.05890c). The left-propagating

fast rarefaction wave (
←

RF ) is slightly stronger than what we found for the HDA case.

Therefore the tangential velocity (vz ∼ 0.9973c) is slightly higher than in the HDA case

(vz ∼ 0.9965c). Thus the “toroidal” magnetic field in the jet region does not greatly affect

the sideways expansion and shock profile, and the rsulting total acceleration to γ ∼ 20 is

only slightly larger than in the HDA case.

To investigate the effect of the total pressure, we performed a pure-hydrodynamic sim-

ulation with high gas pressure (case HDB), shown as green curves, equal to the total (gas

plus magnetic) pressure (ptot = pgas + pmag) in the MHD cases. The resulting structure for

this case is the same as that of HDA case (
←

RCS
→

). The right-moving shock (S
→

) and the

left-moving rarefaction wave (
←

R) are slightly stronger than those in the HDA case because
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of the initial high gas pressure in left state. Consequently, the normal velocity vx in the

HDB case is larger (vx ∼ 0.0645c) than in the HDA case (vx ∼ 0.0589c). In the region of

the left-propagating rarefaction wave (
←

R), the tangential velocity is increased only slightly,

the jet acccelerates only with a marginally greater efficiency than in the HDA case, and the

resultung Lorentz factor thus reaches only γ ∼ 19.

Although the total pressure is the same in the HDB case and MHD cases, the existence

and direction of the magnetic field changes the shock profiles and acceleration. We summarize

the acceleration properties of the different cases in Table 2. When the gas pressure becomes

large in the left state, the normal and tangential velocities increase and the jet is more

efficiently accelerated. This is because the larger discontinuity in the gas pressure produces

a stronger forward shock as well as stronger rarefaction. In MHD, the magnetic pressure is

measured in the jet fluid frame and depends on the angle between the flow and magnetic

field. The magnetosonic speeds also depend on the angle between the flow and the magnetic

field, even for the same magnetic pressure. The direction of the magnetic field is thus a very

important geometric parameter for relativistic magnetohydrodynamics. When a “poloidal”

magnetic field (Bz) is present in the jet region, larger sideways expansion is produced, and

the jet can achieve higher speeds due to the contribution from the normal velocity and

changes in direction. By contrast, when a “toroidal” magnetic field (By) is present in the jet

region, the shock profile is only changed slightly and the jet is only slightly more accelerated

in the tangential direction due to the additional contribution of the tangential component

of the Lorentz force (FEM,z = (J × B)z) as shown in Fig. 4. It should be noted that there

is no contribution by the thermal pressure gradient in the tangential direction. In Fig. 4,

the region with high Lorentz force is different from the accelerated region as evidenced in

the tangential velocity distribution of the MHDB case (red line of lower panel of Fig. 3).

This is because the acceleration by the Lorentz force has happened at an earlier time in the

simulation. From an efficiency point of view, a “poloidal” magnetic field provides the most

efficient acceleration. A “toroidal” magnetic field with the same strength in the jet fluid

frame and the same magnetic pressure as those of a “poloidal” field provides acceleration

comparable to that resulting from high gas pressure, e.g., the HDB case.

3.2. Dependence of the MHD boost mechanism on the strength of magnetic

field

To investigate the acceleration efficiency of the magnetic field, we compare jet speeds

for the MHDA and MHDB cases, as shown in Fig. 5. The left panels of Fig. 5 shows the

dependence of the maximum tangential and normal velocities and resulting Lorentz factors
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on the strength of the poloidal (B
′

z) component of the magnetic field in the fluid frame. The

solid line indicates values obtained using the code of Giacomazzo & Rezzolla (2006) and the

crosses indicate values obtained from our simulations at the code time t = 0.1. Unfortunately

an exact solution using the code of Giacomazzo & Rezzolla (2006) cannot be calculated for

fields in excess of B
′

z ≃ 14 (Bz = 14) for numerical reasons. Also for numerical reasons our

simulation does not yield a solution for B
′

z > 4 (Bz > 4) (the simulation results are indicated

by +). When the poloidal magnetic field exceeds Bz ∼ 30, the code of Giacomazzo & Rezzolla

(2006) indicates that the maximum normal velocity increases and the maximum tangential

velocity deceases, approximately linearly for both quantities. The break near B
′

z ≃ 4 occurs

near the transition (in the left state) from gas pressure dominated to magnetic pressure

dominated. It should be noted that in the hydrodynamic cases investigated by Aloy &

Rezzolla (2006) the Lorentz factors decrease as the normal velocity increases (see their Fig.

4). However, our final Lorentz factor is different from that of Aloy & Rezzolla (2006), because

their initial setting is different from our simulations. They vary the initial normal velocity in

the jet region with constant jet Lorentz factor. The results shown in Figure 4 (left bottom

panel) are caused by the presence of the poloidal magnetic field in the jet region and indicate

that a sufficiently strong poloidal magnetic field in the jet region will allow a jet to achieve

γ ∼ 300, even if the jet is only “mildly” relativistic initially, i.e., γL ∼ 7.

The right panels of Fig. 5 show the dependencies of the maximum tangential and

normal velocities and the Lorentz factor on the strength of the toroidal (B
′

y) component of

the magnetic field in the fluid frame. Again, the solid line indicates values obtained with

the code of Giacomazzo & Rezzolla (2006) and the crosses indicate values obtained from

our simulation at the simulation time t = 0.1. When the toroidal magnetic field becomes

large in the jet region, the maximum normal velocity deceases and the maximum tangential

velocity increases. This dependence is opposite to that of the poloidal magnetic field. The

acceleration in the tangential direction occurs due to the additional contribution of the

Lorentz force as shown in Fig. 4. When the toroidal magnetic field becomes large in the

jet region, the Lorentz force in the tangential direction increases and contributes to the

large acceleration of the jet in the tangential direction. The transition from gas pressure

dominated to magnetic pressure dominated left states occurs near B
′

y ≃ 4. The change of

properties around B
′

y ≃ 4 is clearly seen in the profile of maximum tangential velocity. The

acceleration is much less than that found in the comparable poloidal magnetic field case.

While at B
′

z ≃ 14 the maximum Lorentz factor reaches γ ∼ 300, at B
′

y ≃ 14 the maximum

Lorentz factor is only γ ∼ 66. Thus, a poloidal magnetic field provides ab about 5 times

larger increase in the maximum Lorentz factor in comparison to a toroidal magnetic field.

We extended the computation of maximum tangential and normal velocities and the

maximum Lorentz factor in the toroidal case, indicating a continuing linear increase of the
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maximum Lorentz factor to (γ ∼ 600) as the field approaches B
′

y(∼ 128) (not shown here).

The Lorentz factor is ∼ 300 at B
′

y ∼ 57, which is about 4 times larger than B
′

z ≃ 14.

3.3. Multidimensional simulations

To investigate the effects induced by more than one degree of freedom, we perform two

dimensional RMHD simulations of the MHDA case (B
′

z = 3.0). The computational domain

corresponds to a local part of the jet flow. In the simulations, a “pre-existing” jet flow is

established across the computational domain. The inital condition is the same as that of the

1D MHDA case (e.g., vz = 0.99c and B
′

z = 3.0). In order to investigate a possible influence

of the chosen coordinate system, we perform the calculations in Cartesian and cylindrical

coordinates. The discontinuities between the jet and the external medium are set at x or

r = 1.0 in the inital state (see Fig. 1).

The computational domain is 0 ≤ x, r ≤ 2.0 and 0 ≤ z ≤ 5.0 with (Nx,r × Nz) =

(800 × 250), where Nx,r and Nz are the computational zone number in the x or r direction

and in the z direction. In order to handle the shock profile with high spatial resolution, we use

large numbers of computational zones in the x or r direction. We impose periodic boundary

conditions on the z-direction and outflow boundary conditions on the x or r direction.

Figure 6 shows 2D images of the Lorentz factor for the 2D MHDA in Cartesian and

in cylindirical coordinates at time t = 1.0. In both of cases, the edge of the jet region is

accelerated by the MHD boost mechanism and reaches a maximum Lorentz factor of more

than 30 from an initial Lorentz factor γL ≃ 7. The jets in cylindrical coordinates are slightly

more efficiently accelerated than the jets in Cartesian coordinates.

In order to investigate simulation results quantitatively, we take one-dimensional cuts

through the computational box parallel to the z-axis. Figure 7 shows the resulting profiles

of gas pressure, Lorentz factor (γ), normal velocity (vx or vr) and tangential velocity (vz) of

2D MHDA in Cartesian and in cylindrical coordinates cases. The result consists of a right-

moving fast shock, right-moving contact discontinuity, and a left-moving fast rarefaction wave

(
←

RF CSF→). The profiles from the 2D MHDA simulation in Cartesian coordinates match

well those of the 1D MHDA case. In the 2D MHDA simulation with cylindrical coordinates,

the right-moving fast shock (SF→) is weaker and the left-moving fast rarefaction wave (
←

RF )

is stronger than those of the 2D MHDA simulations with Cartesian coordinates. Selecting

cylindrical coordinates, causes the normal velocity to decrease gradually in the expansion.

The tangential velocity (vz ∼ 0.99595c) is slightly faster than that of 2D MHDA in Cartesian

coordinates (vz ∼ 0.99610c). Because the acceleration in the z-direction is stronger, the jet
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is more accelerated than in 2D MHDA simulations using Cartesian coordinates, and the

jet Lorentz factor reaches γ ∼ 38. Therefore, we find that different coordinate systems

affect the sideways expansion, shock profile, and acceleration. The current simple 2D MHD

simulation in cylindrical coordinates is directly applicable to a 3D cylindrical geometry where

the magentic field and jet flow are aligned and tangent to the jet-external medium interface.

However, recent GRMHD simulations of jet formation predict that the jet has a rotational

velocity (e.g., Nishikawa et al. 2005; Mizuno et al. 2006b; De Villiers et al. 2005; Hawley

& Krolik 2006; McKinney & Gammie 2004; McKinney 2006). In order to investigate the

full-3D effects, we will perform 3D RMHD simulations with helical field in the future.

4. Summary and Discussion

We performed relativistic magnetohydrodynamic simulations of an acceleration boosting

mechanism for fast astrophysical jet flows that result from highly overpressured, tenuous flows

with an initially modest relativistic speed relative to a cold, dense external dense medium

at rest. We employed the newly developed RAISHIN code (Mizuno et al. 2006a), to study

the relativistic boost mechanism proposed by Aloy & Rezzolla (2006), who showed that

hydrodynamic accelerations to γ > 1000 are possible in the situation described above. For

numerical reasons, we reduced the initial discontinuity in the pressure and also reduced the

initial jet velocity. Our results still show the same behavior (
←

RCS
→

) found in Rezzolla

et al. (2003) and Aloy & Rezzolla (2006). The same hydrodynamical structures emerge in

our simulation, confirming the basic properties of the boost mechanism proposed in their

work. We extend their study with relativistic MHD simulations to investigate the effects of

magnetic fields which are ubiquitous in relativistic jets.

Our simulations show that the presence of a magnetic field in the jet can significantly

change the properties of the outward moving shock and inward moving rarefaction wave, and

can in fact result in even more efficient acceleration of the jet than in a pure-hydrodynamic

case. In particular, the presence of a poloidal magnetic field along the jet and parallel to

jet flow produces a stronger outward moving shock and inward moving rarefaction wave.

This leads to acceleration from γ ∼ 7 to γ & 30 when the magnetic pressure is comparable

to the gas pressure. A comparable pure-hydrodynamic case yields acceleration to γ . 20.

Our results would indicate acceleration to γ ∼ 300 for magnetic pressure ten times the gas

pressure. Thus, the magnetic field can in principle play an important role in this relativistic

jet boost mechanism. To address the question whether or not such strong, magnetically

enhanced boosts really do take place in astrophysical sources (AGNs, quasars, microquasars,

gamma-ray bursts) will require additional studies that link the radiation processes in such
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high-Γ flows to observables. The operation of the MHD boost is likely to be strongly affected

by the properties of the external medium, and it is conceivable that magnetic effects kick in

strongly in GRB sources but are absent in the environs of super-massive black holes of the

cores of galaxies.

We found that jets modeled with polar coordinates are more acclerated than those in

Cartesian coordinates. Our 1D and 2D results for a poloidal field component are likely to

be directly applicable to a comparable 3D cylindrical geometry where the magnetic field

and jet flow are aligned and tangent to the jet-external medium interface. However, our

present results for the 1D toroidal field component are not likely to apply in a 3D cylindrical

geometry where a toroidal field component exhibits hoop stress that does not exist in the 1D

configuration. It seems likely that this hoop stress would so modify the sideways expansion of

an overpressured cylindrical jet as to render our present toroidal field results not applicable

unless the magnetic field in 3D is tangled. In this case the magnetic pressure would behave

similarly to the toroidal 1D case computed here. In order to investigate the full 3D effects,

we will perform full 3D RMHD simulations with helical field in future studies.

A hot GRB fireball can expand and accelerate under its thermal pressure to reach large

Lorentz factors as long as baryon-loading is small (Mészáros et al. 1993; Piran et al. 1993).

Although this simple model can account for the large (> 100) Lorentz factors inferred for

GRBs, it does not reflect more realistic settings of complex GRB progenitor/central engine

models. In the collapsar model for long-duration GRBs (Woosley 1993), the tenuous jet is

believed to propagate in a surrounding dense stellar envelope (Zhang et al. 2003), so that

the hydrodynamic configuration considered by Aloy & Rezzolla (2006) and in this paper is

naturally satisfied. A strong poloidal magnetic field is likely present at the bottom of the

central engine. The magnetohydrodynamic boost mechanism discussed here would then play

an important role in jet acceleration. The final Lorentz factor should depend on the detailed

parameters invoked in this mechanism as well as the unknown baryon loading process during

the propagation of the jet in the envelope. In the case of short GRBs that may be of compact

star merger origin (e.g., Paczýnski 1986), there is no dense stellar envelope surrounding the

jet. The jet region is nonetheless more tenuous than the surrounding medium due to the

centrifugal barrier in the jet, so that the acceleration mechanism discussed here still applies

(e.g., see Aloy et al. 2005 for the pure hydrodynamic case). Due to a likely smaller baryon

loading in the merger environment, the jet may achieve an even higher Lorentz factor than

for the case of long GRBs, as suggested by some observations (e.g. their harder spectrum

and shorter spectral lags). The magnetohydrodynamic acceleration mechanism discussed

here also naturally yields a GRB jet with substantial angular structure. In particular, since

acceleration is favored in the rarefaction region near the contact discontinuity, this mech-

anism naturally gives rise to the kind of ring-shaped jet that has been discussed in some
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empirical GRB models (e.g. Eichler & Levinson 2006).
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Table 1. Model and Parameters

Case ρ p vx vy vz Bx(B
′

x) By(B
′

y) Bz(B
′

z)

HDA left state 10−4 10.0 0.0 0.0 0.99 0.0(0.0) 0.0(0.0) 0.0(0.0)

right state 10−2 1.0 0.0 0.0 0.0 0.0(0.0) 0.0(0.0) 0.0(0.0)

HDB left state 10−4 14.5 0.0 0.0 0.99 0.0(0.0) 0.0(0.0) 0.0(0.0)

right state 10−2 1.0 0.0 0.0 0.0 0.0(0.0) 0.0(0.0) 0.0(0.0)

MHDA left state 10−4 10.0 0.0 0.0 0.99 0.0(0.0) 0.0(0.0) 3.0(3.0)

right state 10−2 1.0 0.0 0.0 0.0 0.0(0.0) 0.0(0.0) 0.0(0.0)

MHDB left state 10−4 10.0 0.0 0.0 0.99 0.0(0.0) 21.0(3.0) 0.0(0.0)

right state 10−2 1.0 0.0 0.0 0.0 0.0(0.0) 0.0(0.0) 0.0(0.0)

Note. — Initial conditions for the simulations. HDA is hydrodynamic case. MHDA

and MHDB are magnetohydodynamic cases with Bz
L = 3.0 (B

′

z,L = 3.0) and By
L = 21.0

(B
′

y,L = 3.0) respectively. HDB is hydrodynamic case with gas pressure pgas,L equal

to total pressure (ptot,L = pgas,L + pmag,L) of MHD cases.

Table 2. Maximum velocities and Lorentz factor

Case vx vz γ

HDA 0.0588980 0.996500 16.8570

HDB (high gas pressure) 0.0645304 0.996593 19.4660

MHDA (poloidal field) 0.0956877 0.995931 31.4377

MHDB (toroidal field) 0.0559023 0.997260 20.6427
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Fig. 1.— Schematic picture of our simulations.
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Fig. 2.— Profiles of (left-upper panel) density, (left-lower panel) gas pressure, (right-upper

panel) normal velocity (vx), and (right-lower panel) tangential velocity (vz) of HDA case at

time t = 0.1. The solid lines are the exact solution and the dashed lines are the simulation

results.
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Fig. 3.— Profiles of gas pressure (upper panel), normal velocity (vx) (middle panel), and

tangential velocity (vz) (lower panel) of HDB (green), MHDA (blue), MHDB (red), and

HDA (dotted-line) at time t = 0.1.
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Fig. 4.— Profile of tangential component of Lorentz force (FEM,z = (J×B)z) of the MHDB

(B
′

y = 3.0) case at time t = 0.1.
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Fig. 5.— Dependence of maximum normal velocity (vx) (upper panel), maximum tangential

velocity (vz) (middle panels) and maximum Lorentz factor γ = [1− (vx)2 − (vz)2]−1/2 (lower

panels) on the strength of z-component of magnetic field B
′

z (left panels) and y-component

of magnetic field B
′

y (right panels). The solid line indicates values obtained using the code

of Giacomazzo & Rezzolla (2006) and the crosses indicate the values obtained from our

simulations at the time t = 0.1.
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Fig. 6.— 2D images of Lorentz factor of (a) initial condition, (b) results of 2D MHDA

in Cartesian coordinates case at time t = 1.0 and (c) results of 2D MHDA in cylindrical

coordinates case at time t = 1.0. The color scales show the Lorentz factor. Arrows dipict

the poloidal velocities normalized to light speed.
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Fig. 7.— Profiles of (left-upper panel) density, (left-lower panel) Lorentz factor, (right-upper

panel) normal velocity (vx), and (right-lower panel) tangential velocity (vz) of 2D MHDA

(Bz = 3.0) in Cartesian coordinates (solid lines) and 2D MHDA in cylindrical coordinates

(dashed lines) cases at time t = 1.0.


